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Abstract
When modelling driven steady states of matter, it is common practice either
to choose transition rates arbitrarily, or to assume that the principle of detailed
balance remains valid away from equilibrium. Neither of those practices is
theoretically well founded. Hypothesizing ergodicity constrains the transition
rates in driven steady states to respect relations analogous to, but different
from, the equilibrium principle of detailed balance. The constraints arise
from demanding that the design of any model system contains no information
extraneous to the microscopic laws of motion and the macroscopic observables.
This prevents over-description of the non-equilibrium reservoir, and implies that
not all stochastic equations of motion are equally valid. The resulting recipe
for transition rates has many features in common with equilibrium statistical
mechanics.

PACS numbers: 05.20.−y, 05.70.Ln, 83.50.Ax

1. Introduction

I address the question: what is the appropriate stochastic equation of motion to use when
modelling a driven steady state (including chaotic and fluctuating steady states) such as that
of a fluid under continuous shear flow? At equilibrium, the solution is well understood. To
generate configurations consistent with the equilibrium ensemble, one may use any equation of
motion that respects the principle of detailed balance, which is a constraint on ratios of forward
and reverse transition rates. That condition ensures that every thermally-driven flux is balanced
by an equal and opposite flux. For non-equilibrium systems in continuously driven steady
states, no such guidance is hitherto available in choosing an equation of motion consistent
with the mechanically (externally) driven fluxes, so arbitrary choices are often made. The aim
of this work is to eliminate arbitrariness, and determine what transition rates are implied by
the macroscopic state of the non-equilibrium system, i.e. its mean energy and flux, combined
with our knowledge of the microscopic laws of physics. The objective is to use only the
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information that is available, without unwittingly introducing any arbitrariness, deriving from
personal prejudices. The method for keeping the amount of information constant throughout
the calculation is Jaynes’ information-theoretic method of maximum entropy inference
[1, 2] (MaxEnt), which is often misunderstood in the context of non-equilibrium
thermodynamics, despite recent notable achievements [4]. It has been successfully used
to derive fluctuation theorems [5] and linear transport theory [3], and to explain self-organized
criticality [4].

Jaynes gives a nice explanation of maximum entropy inference in his original paper on the
subject [1], where he uses the method to re-derive equilibrium statistical mechanics without
the need for many microscopic details that had previously been considered necessary. The
application of the method to equilibrium systems is uncontroversial. However, the history of
non-equilibrium information theory can be confusing because it has been used in so many
different ways, some of them exact, some only approximate. In fact, information theory itself
is not a physical theory, but a mathematical method, providing a logical structure. Some
physical input is required if such a method is to make physical predictions. If one throws away
too much relevant information about some non-equilibrium system before applying MaxEnt,
it will still provide answers, but they will be inaccurate. For instance, using the method to
minimize the information content of the momentum distribution in a non-equilibrium gas,
although efficacious, is not an exact method, as was recently shown [6]. In fact, there is
no justification for discarding all information content except for some averaged features.
Indeed, particles possess their individual velocities for a reason: they have each come from
somewhere, and are going somewhere, and their journeys will affect the trajectories of other
particles. These facts are relevant to the physics of a non-equilibrium system, and lead to
temporal correlations.

At the other extreme, if one retains all the details of a system’s phase-space trajectory,
allowing no stochastic input (e.g. from a reservoir), then MaxEnt becomes a null procedure,
since it is asked to choose the most likely distribution from a choice of only one physical
scenario—a delta function distribution of trajectories. Such a null procedure may be regarded
as an extreme case where MaxEnt can correctly ‘predict’ any and all physics. There is thus
no reason in principle why MaxEnt should be expected to fail in non-equilibrium situations,
if we ask it the right questions.

The choice of the prior set of options that is presented to MaxEnt is of crucial importance.
It should be a set of physical paths through phase space, that each obeys Newton’s laws, so that
all physics (the Navier–Stokes equation, long-range correlations, etc) is respected a priori.
MaxEnt then tells us which of these trajectories is most likely to be chosen, under the influence
of a non-equilibrium reservoir that is coupled to the system but uncorrelated with it1. This is
the application of information theory that should be understood here and in [7, 8]. I derive its
implications for transition rates.

Alternatively, as is often done in theoretical modelling, one can settle for a physically
imprecise prior set of dynamical rules—such as Brownian particles, or a discrete state space,
or discrete time steps—so that things become easy to solve. Then applying the methods
below will, accordingly, yield only approximate physics, but at least one will know exactly
what information went into the simplified model. Such an application of the present theory
would yield transition rates that are somewhat arbitrary, due to the arbitrariness of the prior
rates that are chosen. However, it will provide strictly the least arbitrary model. Such a
model will be derived in section 4 for a stochastically hopping particle that demonstrates some

1 The ‘reservoir’ may in fact stand for the rest of the ensemble of systems, as in the equilibrium derivation of the
Gibbs ensemble.
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features of the method. It is important to realize that the approximations introduced in that
section are only for expediency in that particular model. The general derivation of the method
for obtaining transition rates from prior dynamical rules combined with non-equilibrium
macroscopic observables, presented in sections 2 and 3, remains exact.

The conditions derived here for macroscopically driven steady states are analogous to
the equilibrium principle of detailed balance. Like detailed balance, the conditions are not
sufficient to completely determine the microscopic transition rates, but are necessary to be
satisfied by any equation of motion that generates an unbiased ergodic driven steady-state
ensemble. The derivation of detailed balance relies on two assumptions: time-reversal
symmetry of the microscopic laws of motion, and the ergodic hypothesis which implies
that a heat reservoir can be characterized by the Boltzmann distribution with temperature as
the only parameter. Similarly, the non-equilibrium conditions assume the same microscopic
laws that govern equilibrium motions (therefore implicitly requiring microscopic time-reversal
symmetry, broken only by imposition of the macroscopic flux), and rely also on a hypothesis
of ergodicity implying that the driven reservoir is fully characterized by its macroscopic
observables (mean energy and flux). Many quiescent systems (those without fluxes) are at
thermodynamic equilibrium, but exceptions include glasses [9], granular media [10, 11] and
certain cellular automata [12], in which the ergodic hypothesis and/or microscopic reversibility
fails. Boltzmann’s law and the principle of detailed balance apply only to that class of quiescent
systems that are, by definition, at equilibrium. That class of systems has of course proved
to be large, significant and interesting. Similarly, not every non-equilibrium steady state
should be expected to respect the conditions presented here; exceptions include traffic flow
and fluids of molecular motors, in which the constituents violate time-reversal symmetry. The
ergodic hypothesis may also fail in some systems, implying that hidden information that is not
apparent in the macroscopic observables is nonetheless significant. However, it is anticipated
that the ergodicity criteria are respected by the transition rates of many macroscopically driven
systems, defining a special and important class.

The method outlined in section 2 was presented in a recent letter [7]. It is explained
here in more detail, and the analysis extended to an alternative non-equilibrium ensemble in
section 3. The method is demonstrated in section 4.1 where rates are derived for the stochastic
transitions of a particle hopping in a non-trivial energy landscape, subject to a driving force.
Applications to other models are also discussed in section 4.

2. The method

2.1. Information entropy

Using Jaynes’ interpretation of Gibbs’ entropy [1], it is possible to make a ‘maximum entropy
inference’ [1, 4] to assess the probability that a system, subject to random influences, (whether
at equilibrium or not) takes a particular trajectory �0 through its phase space, thus allowing us
to assess the reproducible part [1, 3] of the system’s motion. The recipe for the probability
p(�0) of trajectory �0 is to maximize the Shannon entropy, or information entropy,

SI ≡ −
∑

�

p(�) ln p(�) (1)

subject to constraints that some averaged properties of the trajectories conform with our
knowledge of the macroscopic features such as mean energy, volume, flux etc.

In principle, this formalism gives us a full solution of the statistics of any ensemble, be
it at equilibrium or not. In the absence of any macroscopic fluxes (i.e. at equilibrium), the
prescription reduces to a maximization of the Gibbs entropy with respect to a distribution of



296 R M L Evans

instantaneous states rather than trajectories, yielding Boltzmann’s law. In the non-equilibrium
case, MaxEnt gives us the probability of an entire trajectory �0. It would be more useful to
have a formula for the probability of a short segment of the trajectory, a single transition from
a state a to a subsequent state b. Such a transition probability is what we require for designing
a stochastic model or simulation. This would allow us to generate trajectories belonging to
the non-equilibrium ensemble. Let us now derive that formula. We begin with some trivial
calculations to establish notation.

2.2. Prior probability

At any instant t, the entire state of a system is represented classically by its phase-space
position vector x(t). This is a high-dimensional vector specifying the positions and momenta
of all the particles constituting the system. As time progresses from the beginning t = 0 to the
end t = τ0 of the experiment or simulation, x(t) traces out a trajectory �0 through phase space.
It will prove useful to label each probability distribution function with a subscript indicating
the duration of the trajectories to which it applies thus: pτ0(�0). For a deterministic system
with definite initial conditions, only one trajectory is possible, so the probability distribution
is a delta function. In the presence of randomness, such as coupling to a reservoir of systems
with similar properties, the distribution is finite for all trajectories that respect some prior
dynamical rules, such as conservation of momentum for all internal degrees of freedom not
directly coupled to the reservoir.

In the absence of any posterior constraints other than normalization,∑
�

pτ0(�) = 1, (2)

all trajectories of a given duration τ0 have equal a priori probability. That is not an independent
postulate, but is embodied in the maximum entropy principle of information theory [1, 3],
since the entropy-maximizing distribution is given by

∂

∂pτ0(�0)

∑
�

{−pτ0(�) ln pτ0(�) + λpτ0(�)
} = 0 (3)

with a Lagrange multiplier λ chosen for consistency with equation (2). Equation (3) is solved
by pτ0(�0) = constant, indicating that the unconstrained (‘prior’) set of trajectories of a given
duration have equal probability.

2.3. Equilibrium ensemble

We now impose a posterior constraint, and calculate the statistical properties of that sub-set
of trajectories that respect the constraint. Let us not necessarily conserve the energy E of the
system at each instant (since we allow energy exchange with a reservoir), but rather demand
that its time-average over the whole trajectory �0 is fixed at E0. We shall use a bar to indicate
time averages, so that

E�0 ≡ 1

τ0

∫ τ0

0
E�0(t) dt = E0. (4)

Let us divide the trajectory �0 into shorter segments �, each of duration τ . Then the
constraint on the time-averaged energy may be written as

τ
∑

�

E� = τ0E0. (5)
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Assuming ergodicity, time-averages are equivalent to ensemble-averages in the limit
τ0/τ → ∞. So this constraint, for a time-average on �0, defines the equilibrium canonical
ensemble for �. In other words, the conditional probability pτ

(
�|E�0 = E0

)
of encountering

a particular trajectory segment � of duration τ , given that the whole trajectory has a time-
averaged energy E0, is found by maximizing the information entropy for � subject to
equation (5). The maximization involves Lagrange multipliers β for this energy constraint,
and Z−1 for the normalization constraint, and yields

pτ (�|E0) = Z−1 exp(−βE�)

where the condition E�0 = E0 is represented for brevity by E0. As expected, this is
Boltzmann’s law, and we interpret the Lagrange multipliers as the temperature parameter
β = 1/kBT and partition function Z = ∑

� exp(−βE�).

2.4. Transition rates

A transition rate, for any transition between states a → b say, can be written as a conditional
probability. If we consider a trajectory segment �′ of duration �t , representing the transition
a → b, then the transition rate at some time, which we may define without loss of generality
to be t = 0, is

ω
prior
�′ = p�t(�

′|x(0) = a)/�t. (6)

This is the probability (per unit time) of encountering the trajectory �′ ≡ {x(0) = a,

x(�t) = b}, given that we begin at a. Equation (6) gives the prior rate of the particular
transition. The rate in the equilibrium ensemble is given by a probability subject to two
conditions:

ω
eq
�′ = p�t(�

′|a,E0)/�t (7)

where the condition x(0) = a is represented for brevity by a. To re-cap, equation (7) defines
the probability of encountering trajectory segment �′ (a transition a → b) given that we are in
state a, and that the entire trajectory �0 of duration τ0 will turn out to have a mean energy E0.

2.5. Driven ensemble

We have looked so far at the prior phase-space trajectories, and those for systems in the
equilibrium ensemble. Our goal is to determine the transition rates appropriate to a non-
equilibrium ensemble, for which there is an imposed flux J . Again, we should not over-
constrain the dynamics. Let us allow the flux to fluctuate, and demand only that the dynamics
will result in some finite value J0 of the flux time-averaged over the whole trajectory:

J�0 ≡ 1

τ0

∫ τ0

0
J�0(t) dt = J0. (8)

We ask: what is the probability, in time �t , of encountering the transition �′ = {a → b},
given that we begin in state a, and that the dynamics will eventually conspire to produce a
mean flux J0 and energy E0? Again we relate this conditional probability to a transition rate:

ωdr
�′ = p�t(�

′|a, J0, E0)/�t. (9)

Figure 1 depicts some of the trajectories that have been discussed. Time t is shown on
the horizontal axis, and all trajectories have a total duration τ0. The vertical axis represents
the phase-space coordinates though, of course, this is a reduced representation of the vastly
high-dimensional phase space, since it has been projected onto a single axis. For definiteness,
let us say that this axis represents integrated flux, i.e. the flux that the system has accrued since
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Figure 1. A sample of phase-space trajectories of duration τ0. One phase-space coordinate
(cumulative flux) is shown as a function of time t. At equilibrium, most trajectories lie near the
horizontal axis. The sub-set of trajectories shown in black belongs to the microcanonical-flux
ensemble. Their time-averaged flux is J0. The probability of a transition, in microscopic time
�t , between the phase-space points a and b shown, is enhanced for this sub-set, relative to its
equilibrium likelihood.

t = 0. We must imagine that all the other coordinates required to fully describe the state of
the system are on axes perpendicular to the page.

A sample of trajectories representing the equilibrium distribution is shown (in grey and
black). These trajectories are concentrated close to the time axis (zero flux). If another axis
measuring instantaneous energy E(t) were constructed perpendicular to the page, then the
density of trajectories would be exponentially distributed along that axis, by Boltzmann’s law.
Equation (7) gives the frequency of observing a particular trajectory segment shown in figure 1
(the single transition a → b) of microscopic duration �t , given that we are currently (at t = 0)
in state a, and that the whole trajectory belongs to this equilibrium set. Equation (9) asks for
the frequency with which that trajectory segment {a → b} occurs in the sub-set of trajectories
shown in black in figure 1, for which a given integrated flux will be accumulated by time
t = τ0. This sub-set of trajectories is the driven ensemble.

Note that we shall not require �t to vanish. The discussion will cover discrete-time
processes for which the microscopic time step is �t ≡ 1, as well as continuous-time dynamics
for which �t → 0.

2.6. Bayesian evaluation

To mathematically manipulate conditional probabilities, we appeal to Bayes’ theorem. It
states that the joint probability of two outcomes X and Y both occurring, given a third fact Z,
may be written in two equivalent ways:

p(X|Z)p(Y |X,Z) = p(Y |Z)p(X|Y,Z) (10)

where p is simply used to mean ‘probability’ for any event (appropriately normalized), as
opposed to a particular distribution function. We can now assign the following meanings: X
is the fact that the transition a → b takes place within �t , represented by the trajectory �′;Y

says that the flux has a mean value J�0 = J0 averaged over the entire duration τ0; and Z is the
combined statement that the initial state at t = 0 is a and that the trajectory’s time-averaged
energy will be E�0 = E0. Thus, equation (10) expresses the probability of the transition taking



Detailed balance has a counterpart in non-equilibrium steady states 299

place within �t and the flux averaged over τ0 being J0, for the given initial state and average
energy. It is re-written thus:

pτ0(J0|a,E0)p�t (�
′|a, J0, E0) = p�t(�

′|a,E0)pτ0(J0|a, �′, E0). (11)

Note that it is redundant to specify the two conditions (a, �′), since the trajectory segment �′

is the transition a → b which includes the initial state a. Substituting from equations (7) and
(9) yields a theorem for transition rates in the driven steady-state ensemble,

ωdr
a→b = ω

eq
a→b lim

τ0→∞
p

eq
τ0 (J0|a → b)

p
eq
τ0 (J0|a)

. (12)

Note that all quantities on the RHS of equation (12) are defined at equilibrium, not on the
driven ensemble. This is indicated by the superscript ‘eq’, which is equivalent to the condition
fixing E�0 , the time-averaged energy. Equation (12) tells us that the transition rate in the
driven ensemble is given by the transition rate in the equilibrium ensemble, multiplied by an
enhancement or attenuation factor. We shall see below that the theorem makes intuitive sense.

Given that the dynamics must be consistent with the macroscopically observable mean
energy and flux, and with the same microscopic laws of motion that hold sway in an equilibrium
system, MaxEnt yields an unbiased description of the dynamics, and thereby constrains the
system the least. Equation (12) specifies explicitly the dynamical rules implied by MaxEnt.
How do we know that equation (12) constrains the dynamics the least? It does, because all
the quantities on the RHS are defined for the maximum-entropy ensemble at equilibrium,
i.e. without the extra constraint on the flux. Given that we start with an unbiased set (the
equilibrium ensemble), Bayes theorem gives us the least biased set subject to the extra posterior
constraint.

Let us examine the enhancement factor in equation (12) in detail. It is a ratio of conditional
probabilities for encountering a flux J0 in the equilibrium ensemble. Of course, we do not
expect a system at equilibrium to exhibit any net flux, averaged over its whole trajectory. The
chance of such a flux arising spontaneously at equilibrium is vanishingly small (as τ0 → ∞).
So the RHS of equation (12) is the ratio of two vanishingly small terms. However unlikely
it may be for an equilibrium system to spontaneously exhibit the desired macroscopic flux,
we ask, how much would that probability be enhanced as a result of the putative transition
a → b? If the dynamics of the transition itself contributes some flux to the trajectory, it
is favoured by the enhancement factor. The factor also favours transitions to configurations
that give a greater than average probability of subsequently obtaining the desired flux, for the
given starting point. If the new state b is more likely to initiate high-flux trajectories, then the
transition rate is boosted over and above the equilibrium rate.

We shall examine the implications of equation (12) in some examples, but firstly let us
interpret the meaning of its derivation. Imagine that a lazy physicist wishes to collect data from
a driven steady state, such as continuous shear flow of a complex fluid. Our physicist has a
computer program that simulates the fluid at equilibrium (with free or frictionless boundaries,
say), and is too lazy to write a new program that simulates shear. Instead, (s)he runs the
equilibrium simulation, in the hope that it will spontaneously exhibit shear flow. It does not.
So the dilettante updates the program’s random number generator and runs it again. Having
tenacity and little imagination, the physicist repeats this process countless times until, one day,
the fluid fluctuates into a state of sustained shear flow. The delighted simulator records this
fluke, but continues the project for many more years until a large number of such accidents have
been observed, exhibiting the same shear rate. Finally, the researcher discards an enormous set
of simulated trajectories, and publishes only that subset which happened to perform the desired
shear. On analysing this subset of trajectories, one might expect to observe the equilibrium
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transition rates that were coded into the algorithm. But this is a biased data set, subject to an
a posteriori constraint of shear flux J0. So this sub-set of the equilibrium ensemble exhibits
exactly the transition rates specified by equation (12). Although the programmer has published
a biased account of the equilibrium simulations, there was no unwarranted or subjective bias
other than the flux constraint, hence the project was a success in producing the physics of
shear flow.

Note that, despite extracting a sub-ensemble from the equilibrium ensemble, the lazy
physicist has not produced a near-equilibrium approximation. The ‘sub-ensemble dynamics’
of equation (12) has features qualitatively different from the equilibrium dynamics.

In section 4, I shall use some examples to demonstrate the correctness of the physics
generated by sub-ensemble dynamics (equation (12)). Before doing so, in section 3, I develop
a useful variant of equation (12), analogous to an alternative thermodynamic ensemble.

3. Alternative dynamic ensembles

3.1. Microcanonical-flux ensemble

Equation (12) gives the frequency of observing a particular trajectory segment (e.g. a single
transition a → b) of microscopic duration �t , in the driven ensemble which is a sub-set of
all trajectories, shown in black in figure 1. These trajectories lie in the extreme tails of the
equilibrium distribution. Note that they have common end points, since we have specified the
exact net flux that must flow during the duration of the experiment. Any nearby trajectories,
that do not have exactly the specified flux, do not contribute to the quantities appearing in
equation (12). Even very nearby trajectories are completely discarded by equation (12). This
can be seen by re-writing the probability of the specified flux J0 as a sum over trajectories �0

with fluxes J�0 , so that equation (12) becomes

ωdr
a→b

ω
eq
a→b

=
∫

dJ p
eq
τ0 (J |a → b) δ(J − J0)∫

dJ p
eq
τ0 (J |a) δ(J − J0)

=
∑

�0
p

eq
τ0 (�0|a → b)δ

(
J�0 − J0

)
∑

�0
p

eq
τ0 (�0|a)δ

(
J�0 − J0

) . (13)

Here, the Dirac delta functions kill all trajectories with anything but the exact net flux J0. This
can be a disadvantage for practical applications of the formula. (The lazy physicist, discussed
above, must discard data even from simulations that produce nearly the right flux.) An
alternative expression is now derived, that samples trajectories with less stringent conditions
on their eventual flux content.

3.2. Canonical-flux ensemble

In equilibrium statistical mechanics, the constraint of energy conservation is relaxed by
dividing the isolated microcanonical system into a relatively small sub-section, defining the
canonical system, and the large remainder, known as the reservoir. Similarly, we shall relax
the strict constraint on the time-averaged flux, by dividing the total trajectory of duration τ0

into a part (see figure 1) of duration τ (where �t � τ � τ0), whose properties are examined
in detail, and the large remaining part of duration τ̂ ≡ τ0 − τ , for which the system’s motion
is uncorrelated with the earlier trajectory segment.
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We may express the conditional probability pτ0(J0|a) of a net flux J0 in the full duration
τ0, as an integral over all possible fluxes during the interval τ thus:

peq
τ0

(J0|a) =
∫ ∞

−∞
dJ peq

τ (J |a)p
eq
τ̂ (Ĵ |a, J ) (14)

where pτ̂ (Ĵ |a, J ) is the probability of an appropriate flux Ĵ during interval τ̂ given that the
system began in state a at t = 0, and then flowed with mean flux J for the duration τ . The
required flux Ĵ is given by

τJ + τ̂ Ĵ = τ0J0. (15)

Given that τ exceeds any correlation time τcor, the probability pτ̂ (Ĵ |a, J ) becomes independent
of a, because the system has forgotten its initial state by the time τ at which the interval τ̂

commences. In fact, at time τ , the system is in a state drawn at random from the driven
steady-state ensemble, since the integral in equation (14) is dominated by J ≈ J0. So we may
make the replacement

pτ̂ (Ĵ |a, J ) →
∑

c

pdr(c) p
eq
τ̂ (Ĵ |c) (16)

where pdr(c) is the steady-state distribution of instantaneous microstates in the driven
ensemble. Not only is the above formula independent of the initial state a, it actually takes
a universal (exponential) form as a function of J , as shown in appendix A using the theory
of large deviations. This is because the extremely unlikely value of the flux, Ĵ , is the result
of many unlikely realisations of the flux during the many uncorrelated intervals that comprise
the large duration τ̂ . As a result, equation (12) can be re-cast, using equations (14), (15) and
(16), and the derivation in appendix A, as

ωdr
a→b

ω
eq
a→b

= lim
τ/τcor→∞

∫
dJ p

eq
τ (J |a → b) eτνJ∫

dJ p
eq
τ (J |a) eτνJ

(17)

where the control parameter ν is conjugate to the time-averaged flux, and is fixed by the
relation

∂Q

∂ν
= J, (18)

in terms of the function

Q(ν) ≡ lim
τ→∞

ln〈em〉dr

τ
. (19)

Here, 〈· · ·〉dr is an ensemble average with respect to the steady-state distribution of microstates
pdr(c). We have defined

mc(ν, τ ) ≡ ln
∫ ∞

−∞
peq

τ (J |c) eτνJ dJ (20)

that is a property of an instantaneous state c of the system. Note that mc(ν, τ ) has non-trivial
τ -dependence, containing transients for τ < τcor, and becoming linear in τ for τ 	 τcor, while
Q(ν) is independent of τ .

The above equations have a structure that is familiar from equilibrium thermodynamics.
Clearly, in equation (19), Q plays the role of a thermodynamic potential, and its derivative J

is conjugate to the temperature-like parameter ν.
The conditional probabilities in the integrands of equation (17) describe the likelihood

of any particular flux during the interval τ , given the initial state and/or transition. The
exponential factor measures the change in the weight of the large remainder of the trajectory
of duration τ̂ , due to the initial part accepting a flux J rather than postponing it until after τ .
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Compare equations (13) and (17). The expressions become very similar under a change
of notation τ ↔ τ0. The difference in the new formulation (equation (17)) is that trajectories
with the wrong flux are not eliminated by a delta function, but re-weighted by an exponential
weight factor.

The two alternative formulations are exactly akin to alternative ensembles in equilibrium
statistical mechanics. We can regard the duration of a trajectory as being analogous to the
size of a system at equilibrium, and the flux as analogous to energy-density. Originally
we demanded that the integrated flux was fixed exactly, just as energy is fixed in the mico-
canonical ensemble, and we enquired, in equation (13), about how the instantaneous (‘local’)
conditions are affected by correlations in the rest of the trajectory (‘system’). The formulation
of equation (17) is akin to using the canonical ensemble. Again, we enquire about conditions
at an instant (‘locality’) �t , within a trajectory segment (‘system’) of duration (‘size’) τ .
But now, the integrated flux (‘energy’) is not strictly conserved, but can be exchanged with
the rest of the trajectory (‘a reservoir’) of duration (‘size’) τ̂ much longer (‘larger’) than the
initial trajectory segment (‘system’). Since all important correlations are contained within the
‘system’, the nature of the interface between ‘system’ and ‘reservoir’ becomes unimportant,
and the ‘reservoir’ is characterized by a single parameter, ν. Let us refer to this as the‘canonical-
flux’ ensemble. So long as the trajectory duration (‘system size’) is much greater than any
correlation time (‘length’), the properties at instant (‘locality’) �t are unaffected by whether
integrated flux (‘energy’) is exactly conserved, and the ensembles are equivalent in the infinite-
time (‘thermodynamic’) limit.

It is possible to derive equation (17) (via equations (7) and (9)) by direct maximization of
the information entropy of a set of trajectories, at fixed ensemble-averaged flux and energy.
In that case, as with the above derivation, great care is required to compare the relevant time
scales with correlation times, to avoid unwittingly averaging over the correlations present
in p

eq
τ (J |a → b). That would produce a mean-field expression, in which the rate of each

transition is simply boosted exponentially according to its immediate flux contribution. Such a
scheme is popular in simple models, but should not be mistaken for the exact theorem derived
above.

3.3. Factors affecting transition rates

The expression for transition rates, equation (17), appears to depend on the arbitrary quantity τ .
It can be re-written in an a much clearer form that is explicitly independent of τ , as we now
show.

Although mc(ν, τ ) → ∞ as τ → ∞, the difference mb − ma , for two states a and b, has
a finite asymptote, embodying the different transient influences that the two states have on the
system, before it returns to a statistically steady state. So, let us define a function that contains
that transient information, but is independent of the arbitrary quantity τ , thus:

qa(ν) ≡ lim
τ→∞{ma(ν, τ ) − τQ(ν)} (21)

= ln lim
τ→∞

ema(ν,τ )

〈em(ν,τ )〉dr
(22)

= ln lim
τ→∞

∫
p

eq
τ (J |a) eτνJ dJ∫ 〈

p
eq
τ (J )

〉
dr eτνJ dJ

(23)

so that qa − qb = ma − mb in the long-time limit.
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We require one further piece of notation. The dynamics is described by a set of transitions
a → b carrying integrated flux Jab �t . For continuous dynamics, Jab �t → 0 as �t → 0, but
for discrete transitions, Jab �t remains finite whether or not time steps are made vanishingly
small. As above, the following discussion applies to either case.

In terms of these physically meaningful quantities, transition rates in the driven ensemble
are given by

ωdr
a→b = ω

eq
a→b exp[νJab�t + qb(ν) − qa(ν) − Q(ν)�t]. (24)

The derivation of equation (24) from equation (17) is given in appendix B. It is now clear,
in equation (24), that three distinct factors determine the rate of a transition a → b in the
driven steady-state ensemble. (1) The rate is proportional to the rate at equilibrium. So, all
else being equal, energetically expensive transitions are slow, while down-hill transitions take
precedence. (2) The rate is exponentially enhanced for transitions that contribute a favourable
flux. (3) The dependence on qb − qa is overlooked by mean-field models. It says that a
transition’s likelihood depends also on the state in which it leaves the system. Its rate is
enhanced if it puts the system into a state that is more likely to exhibit flux in the future. The
effect of this factor on the driven steady-state distribution of microstates is to increase (relative
to the Boltzmann distribution) the weight of states that are more-than-averagely willing to
accept a future flux. We shall see an example of this effect in the following section. In the
case of a shear flux, this means that low-viscosity states are favoured, as is often observed.

4. Applications

We have a recipe for constructing a model of any given driven system, which is guaranteed to
yield the desired flux, and to respect all the physical laws that are obeyed by the equilibrium
version of the model, and that is guaranteed to have no artefacts from statistical bias. If we
choose to provide this machinery with an equilibrium model that obeys all of Newton’s laws—
i.e., a fluid whose internal interactions conserve momentum, angular momentum, and energy,
while stochastic forces from the reservoir couple only to particles at the boundary—then it
will yield dynamical rules that also respect Newton’s laws for the boundary-driven fluid. In
other words, the method has the capacity to produce exact physics if provided with an exactly
physical prior. It provides a description of the reservoir, by characterizing the stochastic part
of the equations of motion. The way in which that reservoir couples to the system is up to the
user to decide. In the above example, it is coupled only at the boundary, but we may instead
consider a driven Brownian system, for which the heat bath is more strongly and uniformly
coupled, dominating all momentum variables. Another alternative is to apply the method to
a model whose prior (equilibrium) physical properties are simplified for the sake of clarity
and analytical expediency. In that case, of course, the result of the recipe will be approximate
and unreliable, but still the least arbitrary choice of transition rates for the given degree of
simplification.

The micro-canonical flux ensemble introduced in sections 2 and 3.1 was first presented
in [7], where it was used analytically to construct a continuum model of driven diffusion, and
heuristically to discuss the features of a lattice model of dimers under shear. The latter model
had a much more complex energy landscape including jammed states. Another analytically
solvable model was constructed in [8], using the micro-canonical flux method. It was another
one-dimensional driven diffusion model, but this time with a discrete state space and discrete
time step. In the following section, we shall analytically construct a model of a driven system
with a non-trivial energy landscape that demonstrates some features of more complex systems,
such as sheared complex fluids, with states that are locally trapped so that they cannot easily be



304 R M L Evans

Figure 2. Comb-shaped state-space for the hopping model. Circles represent the possible states
of the system, of types α and β. The single particle, shown as a filled circle, currently occupies
an α state. It may escape into other α states to the left or right with rates L and R respectively, or
downwards in energy, with rate D, to state β. Each β state can be exited with rate U upwards to
the α state at the same location only.

driven. The model reduces to simple one-dimensional driven diffusion in a certain limit, and
has a discrete state space but continuous time, to complement the earlier published models.
We shall use the canonical-flux ensemble of sections 3.2 and 3.3, to demonstrate the utility of
this method.

4.1. The model

Consider a particle that can hop stochastically among a set of discrete states that have the
connectivity shown in figure 2. The particle will be driven by its non-equilibrium heat bath
so that it has, on average, a drift velocity u from left to right. At each location x, it may
occupy one of two states: state α, from which it may escape to the left or right with rates L
and R to other α states at different locations x, or downwards with rate D into a lower energy
trapped state β; once in a β state, the particle cannot exhibit any flux, i.e., cannot move left
or right, but can only wait for a random excitation at rate U back up to the α state at the same
location.

Note that, if we set D = 0, the model reduces to a continuous-time discrete-space linear
hopping model, like the versions that were previously studied with both space and time
continuous [7] or discrete [8].

The equilibrium version of this model (with no mean drift) is very straightforward.
Detailed balance requires that U eq = Deq exp(−E), where E is the energy difference between
states α and β measured in units of kBT , and that Req = Leq ≡ ω0 where we may measure
all rates in units of ω0 so that ω0 ≡ 1 without loss of generality. The occupancy of α states is
given by Boltzmann as 1/(1 + exp(E)), and the only remaining parameter that we are free to
choose is Deq ≡ ρ, which specifies the ratio of vertical to horizontal mobilities.

When the model is not at equilibrium, but is driven at drift velocity u, the naı̈ve expectation
would be either that we are free to choose all four rates U,D,L,R, since non-equilibrium
models traditionally have no rules, or that detailed balance still governs the ratio U/D.
However, as discussed above, neither of these statements is true. There is, in fact, a
least-arbitrary set of rates that corresponds to driving by an uncorrelated heat bath that is
characterized only by its temperature and velocity. We shall now calculate that set of rates,
using the canonical-flux ensemble.

The rates are given by equation (24). Defining our unit of length to be one inter-site
spacing, the integrated flux of a transition to the right (left) is JR�t = 1, (JL�t = −1),
while transitions between α and β states carry no flux as they leave the particle’s displacement
unchanged. Since time is continuous, the time-step is infinitesimal, �t → 0, so that the last
term in the exponential of equation (24) vanishes, and it prescribes the following rates in the
driven ensemble:
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R = eν (25a)

L = e−ν (25b)

D = ρ eqβ−qα (25c)

U = U eq eqα−qβ = ρ e−E+qα−qβ . (25d)

To complete the calculation of the rates, we require only qα − qβ , the difference in the
willingness of the two states to admit a flux. This could be evaluated by ‘brute force’ using
equation (23), if we first calculate the Green function for the equilibrium model, i.e. the
probability that the particle travels a given distance in a given time, given the initial state α or
β. However, that calculation can be avoided, using the derivation in appendix C to show that,
for this ‘comb’ model,

qα(ν) − qβ(ν) = ln(1 + Q(ν)/U eq). (26)

This is purely a result of the facts that state β can only be quit via state α, and that escape
times are distributed exponentially.

We can now construct a differential equation for Q(ν), as follows. Due to the model’s
translational symmetry, the steady-state occupancy of α states is just

fα = U

U + D
(27)

and, since displacements are allowed only from α states, the mean drift velocity is

u = (R − L)fα = 2fα sinh ν. (28)

Now, using equation (18), we obtain an ordinary differential equation,

dQ

dν
= 2(ρ e−E + Q)2 sinh ν

ρ2 e−E + (ρ e−E + Q)2

that can be integrated for cosh ν as a function of Q. The constant of integration is fixed by
Q(0) = 0 which follows from normalization of the probability distribution in the definition of
Q (equations (19) and (20)). Finally, we obtain the required ‘potential’,

Q(ν) = cosh(ν) − 1 − ρ

2
(1 + e−E) +

√[
cosh(ν) − 1 − ρ

2
(1 − e−E)

]2
+ ρ2 e−E

which, with equations (25), (26), (27) and (28), leads to four constraints on the four transition
rates in the driven system, from which the abstract quantities ν and Q have been eliminated:

R − L = (1 + D/U)u (29a)

RL = 1 (29b)

UD = ρ2 e−E (29c)

R + L + D − U = 2 + (1 − e−E)ρ (29d)

One of these four equations is obvious; the others are not. Equation (29a) is simply a re-
statement of equation (28), and gives the drift velocity u that results from any choice of the four
transition rates. So, if we applied the usual ad hoc construction of non-equilibrium stochastic
models, we would pluck four rates out of the air, use equation (29a) to find the resulting
drift velocity, and have no other constraints. The other three constraints have arisen from our
demand that the design of the model incorporates the prior dynamics, the large-scale flux, and
no other design features.
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Figure 3. Rates R, L,U and D for the driven comb model, as functions of the drift velocity u,
using the parameters E = 2, ρ = 0.5.

Note that equations (29b) and (29c) express relations between forward and reverse
transition rates that are generic to any continuous-time model with instantaneous transitions,
that the product of the forward and reverse rates of a transition is equal in the driven and
equilibrium ensembles. This follows directly from equation (24) with Jab�t finite as �t → 0.

The four transition rates defined by equations (29) have exactly the same number of free
parameters as in an equilibrium model: for a given energy gap E and flux u, the four rates are
defined up to one parameter, ρ, that specifies the prior ratio of vertical to horizontal mobilities,
as is the case in the equilibrium version of the model that was required to respect detailed
balance. While the equilibrium occupancy, given by Boltzmann’s law, is independent of ρ,
the occupancy in the driven ensemble (equation (27)) does depend on this kinetic parameter.

4.2. Properties of the model

The transition rates prescribed by sub-ensemble dynamics are plotted as functions of velocity
u in figure 3 for an energy gap E = 2 and mobility ratio ρ = 0.5. Due to the symmetries
of the comb structure, the rates of transitions up and down (U,D) between α and β states
are even functions of u. At u = 0, the rates take their equilibrium values, R = L ≡ 1 and
D = U exp E. On increasing velocity, hops to the right (R) become more frequent, while
hops to the left (L) are suppressed, as expected. Also the particle becomes less likely to fall
down (D) into a trapped β state, and is increasingly dragged out of traps (U) by the driving
force.

The rates are re-plotted on log–log axes (for positive u) in figure 4, using parameter values
E = 6, ρ = 100, that were chosen to provide a separation of time scales, emphasizing the
features of the graphs. Three regimes of drift velocity u become apparent. On the left of
the figure (low u) is the near-equilibrium regime, where the rates D,U , of transitions that do
not carry a flux, remain approximately constant, respecting detailed balance. This fulfils the
naive expectation, often applied to non-equilibrium models, that detailed balance continues
to describe the physics of activated processes. Meanwhile, the rate of hops to the right, R, is
enhanced and to the left, L, is suppressed, so that the sparsely populated α states exhibit the
required drift velocity.
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Figure 4. The transition rates of the driven comb model, shown on log–log axes as functions of
the positive drift velocity u. Parameter values are E = 6, ρ = 100. Three regimes of behaviour
are visible. The regime at intermediate values of u is shaded.

The second regime of the driving velocity, ω0 < u < ρ is shaded grey in figure 4. In this
regime, the flux constraint can no longer be satisfied by the small population of thermally-
activated α states. The states become mechanically activated, with particles in the immobile
β state promoted into the mobile state by the driving force. As u increases through the shaded
part of the figure, the unequal hopping rates to the right and left remain approximately constant,
while the rate of activation U increases and rate of trapping D decreases, so that the drifting
α population increases. This is also apparent in figure 5, which shows the occupancies of the
two states as a function of velocity, for this same set of parameters.

Once the mobile states are fully populated, and the trapped states have negligible
occupancy, the bias on hops to the right can no longer remain constant while satisfying
an increasing flux constraint. Hence, a third regime exists at the highest values of u
(figure 4), where rates R and U both become proportional to the flux u, while the flux-impeding
transitions have rates L and D inversely proportional to u.

4.3. Comparison with shear flow

The model we have studied here, with its simple comb-shaped state space, has some features
that are generic to driven systems. We saw, in section 3.3, that the rate of a transition in a
driven ensemble depends on three factors: its rate at equilibrium, the amount of flux that it
contributes, and the difference in the willingness of the initial and final states to allow the
required flux in the future. Transitions that contribute a nonzero amount of flux were called
‘type A’ in [7], while transitions between states with different promise for future flux where
labelled ‘type B’. In previous articles [7, 8], the rates prescribed by sub-ensemble dynamics
were calculated explicitly only for simple models that exhibited only type A transitions due
to the simplicity of their state spaces. The comb model, on the other hand, has both type
A (α → α) and type B (α � β) transitions. Another example of such a model, that was
previously discussed only heuristically [7, 8], is a set of dimers (particles that occupy two
adjacent lattice sites) that perform random walks on a two-dimensional triangular lattice,
while the lattice itself is driven into shear flow by sporadically cleaving and re-positioning
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Figure 5. Occupancies of α and β states for the same parameters as in figure 4, shown as
functions of the drift velocity, on semi-logarithmic axes. Three zones of behaviour are again
visible: Boltzmann-distributed states at low u; re-population of states at intermediate u; the mobile
α state fully occupied at high u.

its horizontal layers. Certain arrangements of the dimers (analogous to α states of the comb
model) allow these quanta of shear, while other states (analogous to β states) are prevented
from shearing, due to the unbreakable dimers straddling two layers of the lattice, thus jamming
the system.

Although any such many-particle system has a very complex state-space, its crucial
features are reproduced in the comb model. When the comb model is stuck in a β state, the
driving force (that derives from the statistics of the driven ensemble) pushes it into a more
mobile state in order to flow. Likewise, when the dimer model is in a state that will not admit
a flux, it must first re-arrange its particles. The driving force achieves this by imposing a shear
stress on the particles, causing them to re-orient mechanically (as opposed to thermally, by
Brownian motion). The sub-ensemble rules prescribe (for a given prior dynamics) the rate of
that mechanically imposed re-alignment, thereby specifying the constraints that must be met
by a physically acceptable constitutive relation for the flowing system.

5. Summary and outlook

There are certain constraints that must be satisfied by any candidate for a statistical mechanical
theory of driven steady states: it must satisfy the known laws of motion, and it must give rise
to the required macroscopic observables (flux, energy etc). In this paper, we have assumed;
indeed, demanded; that those are the only constraints, and derived the transition rates implied
by that assumption. Comparison with experimental observations will determine a posteriori
whether a particular system belongs to the ergodic class that is well described by these
unbiased rates, just as empirical comparison determines whether or not a static system is at
thermodynamic equilibrium. If one is privy to prior information indicating that the driven
system’s motion is biased in some way that is not apparent in its macroscopic flux and conserved
quantities, then the dynamical rules set out here should be disregarded. To violate the rules
a priori without such a justification is to bias the model with arbitrary information derived
from prejudice rather than from physics. Such arbitrariness is not condoned for equilibrium
models, and the same should be the case for macroscopically driven steady states.

For example, consider how we design a stochastic model of an equilibrium system. The
system is defined by some set of available states, and we must choose the rates of transitions
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between those states. Canonical equilibrium is defined by a fixed volume, particle number,
and mean energy of the system. We might choose any arbitrary set of rates, and then measure
or calculate the mean energy that results when the system arrives at a steady state. Certainly,
that procedure would give rise to a well-defined mean energy, volume and number, but that
is not sufficient for us to say that the system is at equilibrium and that the transition rates are
acceptable. There are constraints arising from the principle of detailed balance, which ensure
that (E,N, V ) are the only parameters characterizing the macroscopic state of the ensemble,
beyond the definition of the system in terms of its accessible states and reversibility. We have
found the generalization of those constraints to non-equilibrium steady states.

The prior is central to the formalism, and is often misinterpreted in non-equilibrium
applications of information theory. In the present context, it is used to mean the complete set
of physically valid paths that a system might take in response to the stochastic forces arising
from a particular coupling to a non-equilibrium reservoir. If the reservoir can exchange energy
with the system, then conservation of energy can be violated in the prior. If the coupling is
only to particles at the system’s boundary, then energy, momentum and angular momentum
must be conserved by all internal interactions, so the prior does not include scenarios for which
those laws are violated.

This has not been the usual definition of the prior, in previous attempts at non-
equilibrium applications of information theory. It is often assumed that our knowledge of
microscopic dynamics can be discarded, and MaxEnt will correctly reconstruct that missing
information. Such optimism cannot be justified. For instance, MaxEnt has been used to
choose between phase-space paths that are characterized by their actions [14], discarding our
knowledge of Hamilton’s principle of least action. The result is an exponential distribution
in which the paths of least action are the most likely, but that result is incorrect. Paths on
which the action is extremized are not just likely; they are the only paths of a classical
system, and therefore the only paths that should appear in the prior if an exact calculation
is wanted.

The central results of this paper are the formulae for transition rates in a driven ensemble.
These are formulated in two alternative ways. In the ‘microcanonical-flux ensemble’, the flux
is constrained to an exact value when time-averaged over the duration (tending to infinity) of
each system’s passage through phase-space, resulting in equation (12). The ‘canonical-flux
ensemble’, in which only the ensemble-averaged flux is constrained, leads to equation (24)
for the transition rates, which is exactly equivalent to the microcanonical-flux prescription.
The canonical-flux equation (24) makes explicit the three factors influencing a transition rate.
As at equilibrium, energetics are important, making a system reluctant to take up-hill steps in
its energy landscape. Secondly, an exponential factor, that one might have guessed, favours
transitions that impart the desired flux. The third factor prescribed by equation (24) is more
subtle. It describes the importance of correlations, and depends on a well-defined quantity
ascribed to each microstate, which quantifies its promise for future flux. A transition is
favoured if it takes the system to a state of higher promise that is more amenable to future
flux-carrying transitions.

The sub-ensemble scheme has previously been demonstrated to produce the standard
equations of motion for diffusion with drift, both for continuous [7] and discrete [8] random
walks. In the present paper, the dynamical rules were evaluated for a more complex model.
We have seen that, for thermally activated processes that are governed by detailed balance
at equilibrium, the sub-ensemble rules describe mechanical activation by the driving force,
although detailed balance is recovered in the low-flux regime.

In the context of shear flow, mechanical activation corresponds to stress-induced re-
arrangement. The fact that this statistical formalism describes the effects of non-equilibrium
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stresses in a natural way, makes it a promising approach for the study of shear-banding,
jamming, and other shear-induced transitions of complex fluids.

At the risk of repetition, we have a recipe for constructing a model of any given driven
system, which is guaranteed to yield the desired flux, and to respect all the physical laws that
are obeyed by the equilibrium version of the model. It is also guaranteed to have no artefacts
from statistical bias. This machinery has the capacity to produce exact physics if provided
with an exactly physical prior. Otherwise, it will yield the least arbitrary model for the given
degree of approximation.
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Appendix A. The canonical-flux potentials

As stated in equation (16), the distribution of flux Ĵ during interval τ̂ , that appears in
equation (14), is uncorrelated with the initial state a, and can therefore be written

pτ̂ (Ĵ |a, J ) → fτ̂ (Ĵ ) ≡
∑

c

pdr(c) p
eq
τ̂ (Ĵ |c) (A.1)

in terms of the instantaneous steady-state distribution of states pdr(c). The distribution fτ̂ (Ĵ )

can be evaluated if we sub-divide the interval τ̂ into n sub-intervals of duration τ , where
n 	 1 since τ̂ ∼ τ0 	 τ . The system begins each of these sub-intervals in a state drawn
randomly and independently from the steady-state distribution pdr(c). These initial states are
uncorrelated because τ 	 τcor. The overall flux in the interval τ̂ is the mean of the fluxes in
these n independent sub-intervals, so that

fτ̂ (Ĵ ) =
∫ ∞

−∞
dJ1 · · · dJn fτ (J1) · · · fτ (Jn) δ

(
Ĵ − 1

n

n∑
i

Ji

)
. (A.2)

This limit distribution gives the likelihood (under equilibrium dynamics, with a non-
equilibrium initial state) that the n independent flux measurements have an improbably-large
mean value Ĵ . Camér’s theorem of large deviations [13] states that the weight in the tail of the
distribution of the mean of n independent identically distributed random variables behaves as

lim
n→∞

1

n
ln

∫ ∞

Ĵ

fnτ (J
′) dJ ′ = −I (Ĵ , τ ). (A.3)

That is, the weight in the tail decays exponentially with n, at a rate I given [13] by

I (J, τ ) = sup
θ

[
θJ − ln

∫ ∞

−∞
fτ (J

′) eθJ ′
dJ ′

]
. (A.4)

Dividing both sides of equation (A.3) by the constant τ gives

lim
τ̂ /τ→∞

1

τ̂
ln

∫ ∞

Ĵ

fτ̂ (J
′) dJ ′ = −I (Ĵ , τ )

τ
. (A.5)

Since the LHS of equation (A.5) is independent of the arbitrary choice of τ , we can infer that
I ∝ τ . Let us define the function

H(J ) ≡ I (J, τ )/τ (A.6)
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that is independent of the arbitrary quantity τ . Writing the exponential decay law explicitly,
with an unknown prefactor A(Ĵ ) that varies only slowly with τ̂ ,∫ ∞

Ĵ

fτ̂ (J
′) dJ ′ → A(Ĵ ) exp[−τ̂H(Ĵ )] as τ/τ̂ → 0

and differentiating with respect to Ĵ gives

fτ̂ (Ĵ ) → [A(Ĵ )τ̂H ′(Ĵ ) − A′(Ĵ )] exp[−τ̂H(Ĵ )]. (A.7)

Now, substituting for Ĵ from equation (15) and Taylor-expanding H(Ĵ ) to first order in τ/τ̂

allows us to take the limit τ̂ /τ → ∞ when substituting equations (14), (A.1) and (A.7) into
(12), yielding

ωdr
a→b

ω
eq
a→b

= lim
τ/τcor→∞

∫ ∞
−∞ dJ p

eq
τ (J |a → b) eτH ′(J0)J∫ ∞

−∞ dJ p
eq
τ (J |a) eτH ′(J0)J

. (A.8)

The supremum in equation (A.4) can be evaluated by defining the functions in
equations (19) and (20). From equations (A.1), (A.4) and (A.6), we have

H(J ) = νJ − Q(ν) (A.9)

with the parameter ν(J ) [equal to θ/τ in equation (A.4)] given by equation (18). Thus the
parameter H ′(J0) in equation (A.8) can be evaluated by differentiating equation (A.9) and
substituting from equation (18), to give

∂H

∂J
= ν (A.10)

resulting in equation (17). Note that Q is a Legendre transform of H, and that ν and J in
equations (A.10) and (18) are conjugate variables.

Appendix B. Re-formulation of the canonical-flux expression for transition rates

Let us make a change of variable in equation (17), and replace the integration over average flux
J by one over total (integrated) flux K ≡ τJ . Then, using p

eq
τ (K| · · ·) dK now to represent

the normalized probability of finding a total flux K on an equilibrium trajectory of length τ ,
we can write

ωdr
a→b

ω
eq
a→b

= lim
τ/τcor→∞

∫
dKp

eq
τ (K|a → b) eνK∫

dKp
eq
τ (K|a) eνK

. (B.1)

Now, the expression p
eq
τ (K|a → b) is the probability of accumulating an integrated flux K

during interval τ , given that the initial part �t of that interval is taken up with a transition from
state a to b. Since that transition carries an integrated flux Kab ≡ Jab �t , we can replace the
expression by the probability of accumulating the remaining flux K − Kab in the remaining
time, starting from state b, i.e.

peq
τ (K|a → b) = p

eq
τ−�t(K − Kab|b).

Hence, after a change of variable, equation (B.1) gives

ln
ωdr

a→b

ω
eq
a→b

= νKab + lim
τ→∞[mb(ν, τ − �t) − ma(ν, τ )] (B.2)

= νKab + lim
τ→∞[mb(ν, τ ) − ma(ν, τ )] − ζb(ν,�t) (B.3)
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where

ζb(ν,�t) ≡ lim
τ→∞[mb(ν, τ ) − mb(ν, τ − �t)] (B.4)

and, by substituting τ → τ + �t into equation (B.2), we find ζa = ζb∀ a, b, i.e., ζb is
state-independent. Given that the limit in equation (B.4) exists, we can write

ζb(ν,�t) = �t lim
τ→∞

(
∂mb

∂τ

)
ν

(B.5)

even for finite �t , since mb asymptotes to a linear function of τ . The state-independence
of ζb can now be used to factor out the time-derivate of m from the ensemble average when
differentiating equation (19) with respect to τ , yielding

ζb(ν,�t) = Q(ν)�t ∀ b. (B.6)

Finally, substituting equation (B.6) into (B.3) gives a very simple expression for the ratio of
transition rates,

ln
ωdr

a→b

ω
eq
a→b

= νKab − Q(ν)�t + lim
τ→∞[mb(ν, τ ) − ma(ν, τ )] (B.7)

from which equation (24) follows.

Appendix C. Calculation for continuous-time hopping on a comb

For the discrete states of the comb model of section 4.1, with the integrated flux J�t quantized
into discrete values of the displacement x, equation (20) becomes

mβ(ν, τ ) = ln
∞∑

x=−∞
Gβ(x, τ ) eνx

where Gβ(x, τ ) is the equilibrium Green function for β states. That is the probability of
attaining a displacement x in time τ given that the particle initially occupies a β state. An
equivalent expression holds for mα .

In the continuous-time model, a particle occupying state β at time 0 will escape to the
corresponding α state at a time t that is drawn stochastically from the exponential probability
distribution pβα(t) = U eq exp(−U eqt). Once excited to the α state, the particle is governed by
the corresponding Green function Gα(x, τ ), so that the Green function for a particle occupying
state β is given by

Gβ(x, τ ) =
∫ τ

0
pβα(τ − t)Gα(x, t) dt

= U eq e−U eqτ

∫ τ

0
eU eqtGα(x, t) dt

from which it follows that

exp(U eqτ + mβ(ν, τ )) = U eq
∫ τ

0
exp(U eqt + mα(ν, t)) dt.

Differentiating with respect to τ yields

U eq +
∂mβ(ν, τ )

∂τ
= U eq exp(mα(ν, τ ) − mβ(ν, τ )).

In the limit of large τ , the time derivative of mβ is just Q, as given by equation (B.6), so that,
with the definition of qα in equation (21), the required result, equation (26) follows.
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